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Graphical construction for the direction of shear
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A new graphical method is developed to determine the direction of the maximum resolved shear stress
on a fault plane. It differs from existing graphical methods in using the direction perpendicular to the
maximum resolved shear. It is based upon the theory of vector manipulation, making the proposed
method more straightforward and more graphical, and, hence, we believe more accessible.

� 2008 Published by Elsevier Ltd.
1. Introduction

Determining the direction of the maximum resolved shear
stress on a certain planar surface, such as a fault or crystallographic
glide plane, plays a fundamental role in examining the onset of slip
along these planes for a given stress state, and it has been vigor-
ously addressed by many structural geologists (e.g., Johnson and
Mellor, 1973; Lisle, 1989, 1998; Means, 1989; DePaor, 1990; Ragan,
1990; Fry, 1992; Fleischmann, 1992; Ritz, 1994). For the task of
graphically deriving the maximum shear direction on a surface,
given the principal stresses, numerous methods have been devel-
oped, according to the preferences of different authors in visual
construction. Despite the fact that the shear on the surface is readily
numerically determined, it is somewhat difficult to determine it
directly in a graphical way. All of the existing methods were devised
to look directly for the direction of the maximum resolved shear
stress on the surface, each in their own way.

This short contribution is aimed at developing a new graphical
method for the above task. It will be shown below that the direction
of the maximum resolved shear stress can be obtained from its
perpendicular direction on the surface that is graphically deter-
mined using the method proposed in this paper. The determination
of the latter direction is very straightforward, using the theory of
vector manipulation.

Throughout this paper, compressional stress is positive in sign,
and tensional stress negative.
x: þ86 20 85290130.
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2. Fundamentals

Let n stand for the normal unit vector to a fault plane.

n ¼ ½n1;n2;n3� (1)

where n1, n2 and n3 are the Cartesian coordinates along the X-axis,
the Y-axis and the Z-axis, respectively. For the known stress (s), the
stress vector or traction (t) and the maximum resolved shear stress
(smax) exerted on the plane are readily calculated according to the
following expressions (e.g., Ragan, 1990; Lisle, 1998):

t ¼ ns (2)

smax ¼ t � n
�

tnT
�

(3)

where T is matrix transpose. In Eqs. (2) and (3), t is the projection of s

on n, and the projection of t on the fault plane is smax lying in a plane
through n and t. Despite the simplicity of these equations, it is rather
difficult to directly determine the direction of the maximum
resolved shear stress in a graphical way, for instance, by using the
stereonet that is familiar to structural geologists. That is why many
graphical methods for the determination (e.g., Johnson and Mellor,
1973; Lisle,1989,1998; Means,1989; DePaor,1990; Ragan,1990; Fry,
1992; Fleischmann, 1992; Ritz, 1994) have been devised.

Let l be the unit vector on the fault plane perpendicular to the
maximum resolved shear stress.

l ¼ ½l1; l2; l3� (4)

where l1, l2 and l3 are the Cartesian coordinates along the X-axis, the
Y-axis and the Z-axis, respectively. According to Eqs. (2) and (3),
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there is no resolved shear in the direction perpendicular to the
maximum resolved shear stress. Therefore,

smaxlT ¼ 0 (5)

Inserting Eq. (3) into Eq. (5) yields

nslT ¼ 0 (6)

In practice, Eq. (6) is one of the most important relationships for
inversion of stress from fault/slip data (e.g., Fry, 1999; Shan et al.,
2003), because the fault striation is considered parallel to the
direction of the maximum resolved shear stress (Carey and Brunier,
1974).

Let us define the coordinate axes such than the maximum,
intermediate and minimum principal stress directions are the X-
axis, the Y-axis and the Z-axis, respectively. Eq. (6) is then simpli-
fied to,

n1l1s1 þ n2l2s2 þ n3l3s3 ¼ 0 (7)

where s1, s2 and s3 are the maximum, intermediate and minimum
principal magnitudes, respectively.

By definition, unit vectors l and n are mutually perpendicular.
Hence,

n1l1 þ n2l2 þ n3l3 ¼ 0 (8)

Solving n3l3 from this equation, and then inserting it into Eq. (7),

n1l1ðs1 � s3Þ þ n2l2ðs2 � s3Þ ¼ 0 (9)

n1

n2

l1
l2
¼ �s2 � s3

s1 � s3
¼ �f (10)

where f is the stress ratio (Bishop, 1966). The importance of this
concept lies in the fact that all stresses inverted from fault/slip data
or focal mechanism data are not principal stress values but only the
relative magnitudes of these. Eq. (10) is essentially similar to those
equations deduced by many authors, e.g., Lisle’s (1998) equation (8)
and Fry’s (1992) equation at step 3.

From Eq. (10), the projection of l, or [l1,l2], in the s1s2 plane is
perpendicular to the projection of n, or [n1,n2], for f¼ 1, and is
parallel to the intermediate principal direction when f¼ 0. Located
in the range bounded by these two end members is the projection
of l for 0< f< 1. Interestingly, this gives rise to a possible range of
the maximum resolved shear stress direction on the fault plane for
an unknown f.

Let us rewrite Eq. (10) as

l2
l1
¼ �n1

fn2
(11)

Therefore, simultaneous solution of Eqs. (8) and (11) can give
the unit vector l, from which the direction of the maximum
resolved shear stress on the fault plane is readily obtained.
However, instead of direct calculation, a simple graphical deter-
mination of vector l based upon these equations is described in the
section below.
3. Construction

To illustrate the graphical method described in this section, the
example used by Ragan (1990) will be taken (Fig. 1a). In the
example, the maximum (s1), intermediate (s2) and minimum (s3)
principal stresses have a bearing and plunge of 337�/78�, 223�/05�

and 132�/11�, respectively, and the stress ratio is 0.33. For this
stress, the direction of the maximum resolved shear stress on
a fault plane with a dip direction of 070� and a dip angle of 60� is
constructed in the following steps (Fig. 1).

Step 1 Plot on a stereogram the principal axes and the normal (n) to
the fault plane, and draw the great circles of the fault plane
and of principal stress plane containing s1 and s2 (Fig. 1a).

Step 2 Draw a great circle through n to s3, and mark point p at its
intersection with the s1s2 plane (Fig. 1b). Read along the
great circle the angle (q) between p and s1, 58� in this case,
and mark point q perpendicular in the s1s2 plane to p. As
previously discussed, the projection of l on the principal
plane is q for f¼ 1, and s2 for f¼ 0.

Step 3 Draw an X–Y graph to show points p and q projected onto
the s1s2 plane (Fig. 1c). As in Eq. (10), the vectors of p and q
might have X–Y coordinates [n1,n2] and [n2,�n1], respec-
tively. They have non-unit length, and are mutually
perpendicular. Keep in mind that we are interested in the
absolute value of angles in Fig. 1c. Rescale the X-coordinate
of q to fn2, to give point r, [fn2,�n1]. Read the acute angle
(4) between r and s1, 62� in this case. It is worthwhile to
note that it is not necessary to use any trigonometrical
functions to solve Eq. (10) for 4, as in the preprocessing of
data for some graphical methods (Fry, 1992; Lisle, 1989,
1998).

Step 4 Mark the direction of r on the stereogram at angle 4 from s1

on the s1s2 plane (Fig. 1d).
Step 5 Draw a great circle through r and s3, and mark its inter-

section point l with the great circle of the fault plane. Find
the direction of the maximum resolved shear stress (s), 76�/
60� in this case, that is perpendicular to l on the great circle
of the fault plane (Fig. 1e).

Step 6 Identify each of the sides of the fault plane that has the end
of s within 90� of s1 and s3, and determine the shear sense
by the criterion that the stress acts from the end of s within
90� of s1 to the end of s within 90� of s3 (Fry, 1992). The
shear sense is normal for the fault in this case.
4. Discussions and conclusions

As shown above, the direction of the maximum resolved shear
stress on the fault plane can be obtained from its perpendicular
direction on the plane determined graphically by using the method
proposed above. This method is different from all existing methods
that try a variety of ways to locate the shear direction directly. It is
based upon the theory of vector manipulation, and, more impor-
tantly, requires far less specialized knowledge about the stress
tensor than is necessary for many existing graphical methods (e.g.,
Means,1989; Fry, 1992; Lisle, 1989, 1998). Accordingly, calculation is
reduced to a greater degree than any of the existing graphical
methods, needing no reference to a calculator for the solution of the
trigonometrical functions. All these features make the method
simpler and more straightforward and even more graphical.
Therefore, we believe that it would become more accessible to
readers, particularly those unfamiliar with the subject.

The disadvantage of the method proposed above, if significant,
is the need of a few more graphical steps. In this sense, plotting
more points and great circles probably takes slightly more time and
more effort in the construction.

The method developed in this paper can also be used, as an
analogue, to determine the direction of shear strain. For the sake of
brevity, this will not be discussed here, and interested readers are
encouraged to do this by themselves.
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Fig. 1. Steps (a)–(e) for applying the graphical method proposed in the paper to an example taken from Ragan (1990). See the text for more definitions and more detailed
explanation at each individual step. Lower hemisphere projection is used in each stereogram, at the top of which the short line is directed towards the north. In Fig. 1c, the
coordinates of p and of q are scaled up to have unit length, for the sake of convenience in display. This is made justifiable by our interest only in their inclination angles with the X-
axis, and not the absolute values of their coordinates.
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